319 research outputs found

    Antarctic Marine Biodiversity and Deep-Sea Hydrothermal Vents

    Get PDF
    A recent study has demonstrated that deep-sea hydrothermal vents in the Antarctic have rich and unusual animal communities. This discovery highlights the importance of the Antarctic benthos for biological understanding

    A missing ingredient - more active participation by younger scientists

    Get PDF

    Thermal preference and performance in a sub-Antarctic caterpillar: A test of the coadaptation hypothesis and its alternatives.

    Get PDF
    Physiological ecologists have long assumed that thermoregulatory behaviour will evolve to optimise physiological performance. The coadaptation hypothesis predicts that an animal\u27s preferred body temperature will correspond to the temperature at which its performance is optimal. Here we use a strong inference approach to examine the relationship between thermal preference and locomotor performance in the caterpillars of a wingless sub-Antarctic moth, Pringleophaga marioni Viette (Tineidae). The coadaptation hypothesis and its alternatives (suboptimal is optimal, thermodynamic effect, trait variation) are tested. Compared to the optimal movement temperature (22.5°C for field-fresh caterpillars and 25, 20, 22.5, 25 and 20°C following seven day acclimations to 0, 5, 10, 15 and 5-15°C respectively), caterpillar thermal preference was significantly lower (9.2°C for field-fresh individuals and 9.4, 8.8, 8.1, 5.2 and 4.6°C following acclimation to 0, 5, 10, 15 and 5-15°C, respectively). Together with the low degree of asymmetry observed in the performance curves, and the finding that acclimation to high temperatures did not result in maximal performance, all, but one of the above hypotheses (i.e. \u27trait variation\u27) was rejected. The thermal preference of P. marioni caterpillars more closely resembles temperatures at which survival is high (5-10°C), or where feeding is optimal (10°C), than where locomotion speed is maximal, suggesting that thermal preference may be optimised for overall fitness rather than for a given trait

    Similar metabolic rate-temperature relationships after acclimation at constant and fluctuating temperatures in caterpillars of a sub-Antarctic moth.

    Get PDF
    Temperature compensation in whole-animal metabolic rate is one of the responses thought, controversially, to characterize insects from low temperature environments. Temperature compensation may either involve a change in absolute values of metabolic rates or a change in the slope of the metabolic rate - temperature relationship. Moreover, assessments of compensation may be complicated by animal responses to fluctuating temperatures. Here we examined whole animal metabolic rates, at 0 °C, 5 °C, 10 °C and 15 °C, in caterpillars of the sub-Antarctic moth, Pringleophaga marioni Viette (Tineidae), following one week acclimations to 5 °C, 10 °C and 15 °C, and fluctuating temperatures of 0-10 °C, 5-15 °C, and 10-20 °C. Over the short term, temperature compensation was found following acclimation to 5 °C, but the effect size was small (3-14%). By comparison with caterpillars of 13 other lepidopteran species, no effect of temperature compensation was present, with the relationship between metabolic rate and temperature having a Q10 of 2 among species, and no effect of latitude on temperature-corrected metabolic rate. Fluctuating temperature acclimations for the most part had little effect compared with constant temperatures of the same mean value. Nonetheless, fluctuating temperatures of 5-15 °C resulted in lower metabolic rates at all test temperatures compared with constant 10 °C acclimation, in keeping with expectations from the literature. Absence of significant responses, or those of large effect, in metabolic rates in response to acclimation, may be a consequence of the unpredictable temperature variation over the short-term on sub-Antarctic Marion Island, to which P. marioni is endemic

    Variation in decomposition rates in the fynbos biome, South Africa: the role of plant species and plant stoichiometry

    Get PDF
    Previous studies in the fynbos biome of the Western Cape, South Africa, have suggested that biological decomposition rates in the fynbos vegetation type, on poor soils, may be so low that fire is the main factor contributing to litter breakdown and nutrient release. However, the fynbos biome also comprises vegetation types on more fertile soils, such as the renosterveld. The latter is defined by the shrub Elytropappus rhinocerotis, while the shrub Galenia africana may become dominant in overgrazed areas. We examined decomposition of litter of these two species and the geophyte Watsonia borbonica in patches of renosterveld in an agricultural landscape. In particular, we sought to understand how plant species identity affects litter decomposition rates, especially through variation in litter stoichiometry. Decomposition (organic matter mass loss) varied greatly among the species, and was related to litter N and P content. G. africana, with highest nutrient content, lost 65% of its original mass after 180 days, while E. rhinocerotis had lost ca. 30%, and the very nutrient poor W. borbonica <10%. Litter placed under G. africana decomposed slightly faster than when placed under E. rhinocerotis. Over the course of the experiment, G. africana and E. rhinocerotis lost N and P, while W. borbonica showed strong accumulation of these elements. Decomposition rates of G. africana and E. rhinocerotis were substantially higher than those previously reported from fynbos vegetation, and variation among the species investigated was considerable. Our results suggest that fire may not always be the main factor contributing to litter breakdown and nutrient release in the fynbos biome. Thus, biological decomposition has likely been underestimated and, along with small-scale variation in ecosystem processes, would repay further study

    Thermal tolerance, climatic variability and latitude

    Get PDF
    The greater latitudinal extents of occurrence of species towards higher latitudes has been attributed to the broadening of physiological tolerances with latitude as a result of increases in climatic variation. While there is some support for such patterns in climate, the physiological tolerances of species across large latitudinal gradients have seldom been assessed. Here we report findings for insects based on published upper and lower lethal temperature data. The upper thermal limits show little geographical variation. In contrast, the lower bounds of supercooling points and lower lethal temperatures do indeed decline with latitude. However, this is not the case for the upper bounds, leading to an increase in the variation in lower lethal limits with latitude. These results provide some support for the physiological tolerance assumption associated with Rapoport's rule, but highlight the need for coupled data on species tolerances and range size

    Using scale–area curves to quantify the distribution, abundance and range expansion potential of an invasive species

    Get PDF
    Aim: Invasive species distribution and abundance data are essential for management decisions on mitigating impacts but is seldom available. Here, we use scale–area curves to assess the distribution, abundance and consequent management implications of an invasive plant (Acacia longifolia) within selected occupancy grid cells, spread across regional ranges and representing the full national extent. We determine whether occupancy patterns are explained by climatic suitability or range structure and identify areas where A. longifolia can still be regarded as an important invasive based on contiguous occupancy. Location: South Africa including the Fynbos, Thicket, Savanna and Grassland biomes. Methods: The quarter degree occupancy of A. longifolia was used to select core, edge, and climatically unsuitable grid cells within different regions of the national range. Cells were surveyed across a linear resolution from 25 km to 2.5 m allowing the first multi-scales description of an invasive species’ space-filling properties. Patterns from grid cells in turn were viewed regionally to describe regional variation in spatial structure. Results: In regions with contiguous areas of favourable habitat, scale–area curves indicated greater occupancy in core than edge areas, whereas patterns were reversed when suitable areas were more fragmented. Also, at times climatically suitable areas were unoccupied, while unsuitable areas were occupied. Within cells, occupancy was well explained by the presence of fynbos vegetation types, while nationally, contiguous occupancy was almost exclusive to the Fynbos Biome. Main conclusions: Scale–area curves can advance the understanding of biological invasions and invasive plant distributions. Here, we detected potential areas of invasive concern, plus differences in abundance and distribution patterns, and associated correlates, at landscape and national scales. As there was no general relationship between range position or climatic suitability and A. longifolia’s spatial structure, we propose habitat suitability as an alternative explanation which, in turn, suggests limited range expansion potential.Centre of Excellence for Invasion Biolog

    A multi-site method to capture turnover in rare to common interactions in bipartite species networks

    Get PDF
    1. Ecological network structure is maintained by a generalist core of common species. However, rare species contribute substantially to both the species and functional diversity of networks. Capturing changes in species composition and interactions, measured as turnover, is central to understanding the contribution of rare and common species and their interactions. Due to a large contribution of rare interactions, the pairwise metrics used to quantify interaction turnover are, however, sensitive to compositional change in the interactions of, often rare, peripheral specialists rather than common generalists in the network. 2. Here we expand on pairwise interaction turnover using a multi-site metric that enables quantifying turnover in rare to common interactions (in terms of occurrence of interactions). The metric further separates this turnover into interaction turnover due to species turnover and interaction rewiring. 3. We demonstrate the application and value of this method using a host–parasitoid system sampled along gradients of environmental modification. 4. In the study system, both the type and amount of habitat needed to maintain interaction composition depended on the properties of the interactions considered, that is, from rare to common. The analyses further revealed the potential of host switching to prevent or delay species loss, and thereby buffer the system from perturbation. 5. Multi-site interaction turnover provides a comprehensive measure of network change that can, for example, detect ecological thresholds to habitat loss for rare to common interactions. Accurate description of turnover in common, in addition to rare, species and their interactions is particularly relevant for understanding how network structure and function can be maintained
    corecore